www.smagrinet.eu

Module I

Artificial Intelligence (AI) in Smart Grids

Technical University of Dresden

2020-11-24, Train the trainers Workshop sascha.mueller@tu-dresden.de olga.zyabkina@tu-dresden.de

Lectures overview

- **1.** Introduction to AI & ML
- 2. Forecasting methods
- 3. Linear and non-linear models (KTU)
- 4. Generalization issues (KTU)
- 5. Automatic anomaly detection in Power Quality (PQ) data
- 6. PQ disturbance detection using AI methods

Introduction to AI & ML

1. Introduction

- Definition
- Application examples

2. Overview of ML methods

- Classification
- Learning paradigms
- Method examples

3. General methodology

- Problem analysis
- Implementation

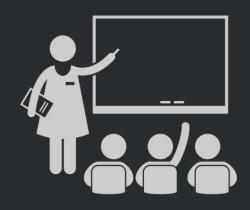
Introduction to AI & ML

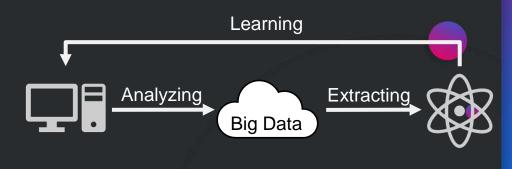
Artificial Intelligence

- Basic requirement: ability to learn
- Learning process = Machine Learning

Machine Learning

- Based on certain methods/algorithms
- Depends on teaching
- Analysis of a large volume of data ("Big data")





Introduction to AI & ML Classification

The learning paradigm

Common tasks

The working principle

- o Supervised
- Semi-supervised/reinforcement
- D Unsupervised
- o Approximation/optimization
- Estimation/forecasting
- Pattern recognition
- Decision making
- Connectionist
- o Genetic
- Probabilistic
- Classification
- o Clustering

Introduction to AI & ML

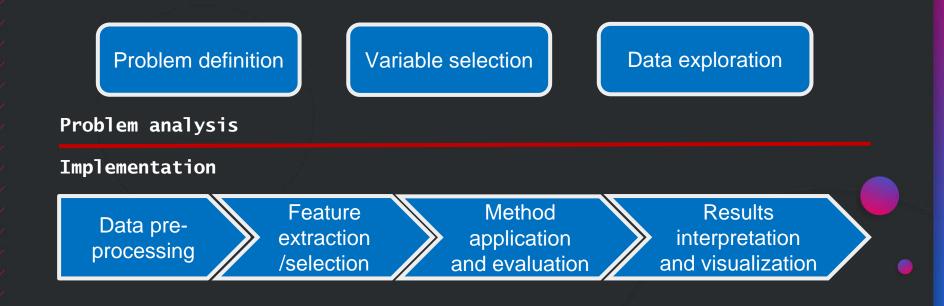
Method	Application	Principle
Artificial neural network	Universally usable	Connectionist
Particle swarm optimization	Optimization	Genetic
Bayesian statisticsBayesian networks	Estimation Forecasting	Probabilistic
 <i>k</i>-nearest neighbors (<i>k</i>-NN) Decision tree/Random forest Support vector machine (SVM) 	Pattern recognition Decision making	Classification
 Hierarchical clustering <i>k</i>-means clustering 	Pattern recognition	Clustering

Introduction to AI & ML

Decription of each method

- Working principle
- Application
- Learning method
- Challenges
- Functional description

Introduction to AI & ML General methodology



Forecasting methods

- **1.** Introduction
- 2. Overview of forecasting
 methods
- 3. Regression models
- 4. Time series models
 - Time series decomposition
 - Exponential smoothing
 - ARIMA models

Forecasting methods Classification

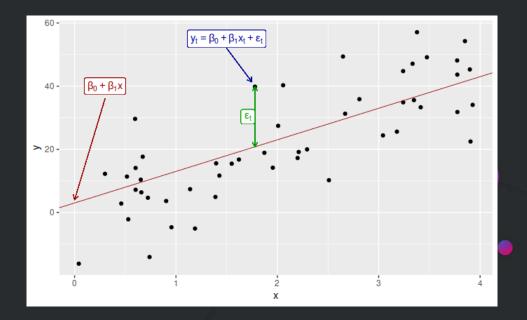
- The forecast horizon
- (Very) short term (hours to days)
- Medium term (weeks to months)
- o Long term (years)

• The **input data**

- Time series models
- o Explanatory models
- Dynamic regression models

Forecasting methods Linear regression

• Fitting the parameters of a linear function to model the observations

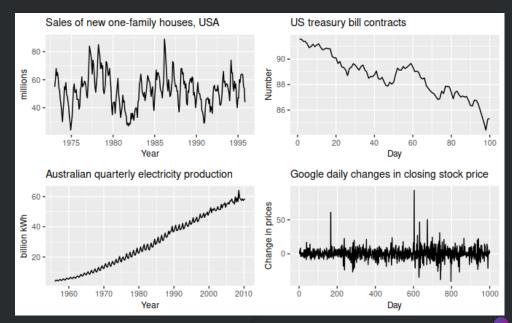


Forecasting methods Time series patterns

- Trend
 - Long-term change
- Seasonality
 - Fixed frequency (e.g. week/year)
 - Due to seasonal factors

Cycle

- No fixed frequency
- Due to other factors (e.g. economic)



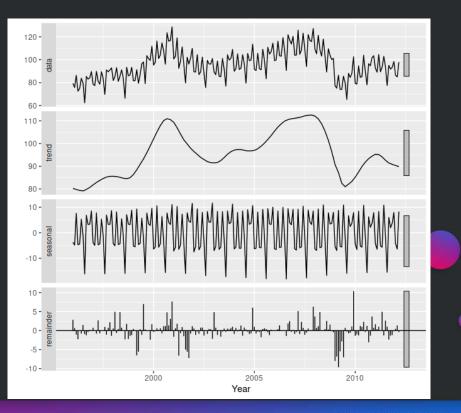
Forecasting methods Time series decomposition

Original time series

Trend-cycle component

Seasonal component

Remainder component



Automatic anomaly detection in PQ data Content

- 1. Anomaly definition and classification
- 2. Anomaly detection process
- 3. Application example

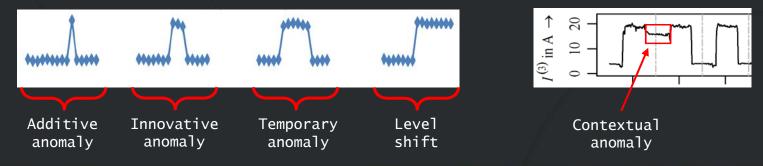
Automatic anomaly detection in PQ data Anomaly definition and classification

1. What is anomaly?

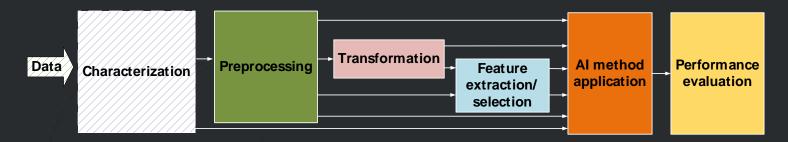
- Anomalies are defined as rare and significant deviations
- Also know as outlier, event, irregular variation, sudden change

2. Anomaly classification

- Four main types of outlier (anomaly)
- Over time new classification and anomalies variants appeared, e.g. contextual anomaly



Automatic anomaly detection in PQ data Anomaly detection process



Generally anomaly detection process includes 6 steps:

1. Data characterization

(Exploratory data analysis)

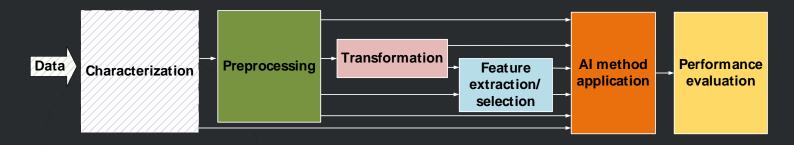
2. Data preprocessing

(Data preparation necessary to conduct for meaningful analysis)

3. Data transformation

(Where a data set may be transformed into a data set with another set of attributes of the same or a different type)

Automatic anomaly detection in PQ data Anomaly detection process

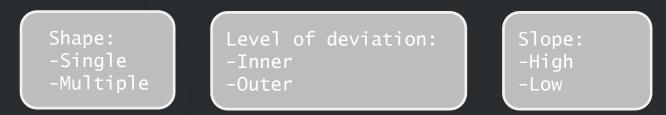


4. Feature extraction/selection
(The process for generating numerical descriptions of data instances)

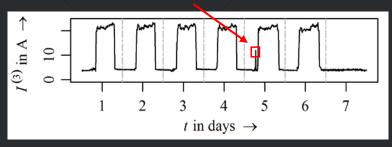
5. AI method application
(Design and application of anomaly detection method)

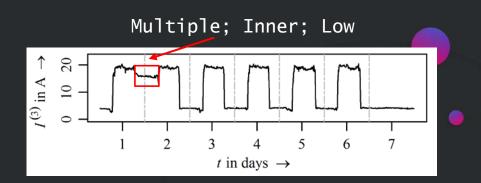
6. Performance evaluation
(Quantify effectiveness of the method)

- Current and voltage harmonics
- Anomalies are characterized with 3 properties:



Single; Inner; High





- <u>Single</u> anomaly detection
- 2 step approach:

1st step:

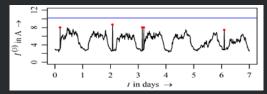
- ✓ Apply <u>LOWESS</u> to the original time series
- Extract the smoothed component
- ✓ Get the rest component

2nd step:

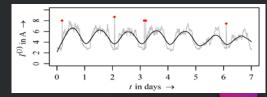
 Apply the threshold using Interquartile Range (IQR)

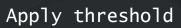
✓
$$l_{IQR} = \begin{cases} x_{[75]} + 1.5 \cdot IQR \\ x_{[25]} - 1.5 \cdot IQR \end{cases}$$

Measurement data



Apply LOWESS







- <u>Multiple</u> anomaly detection
- 4 steps approach

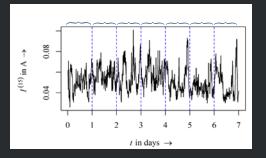
Step 1: Data grouping
 Group data according to day of the week

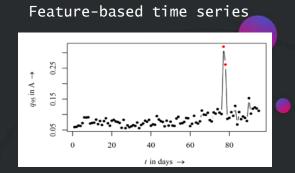
Step 2: Transformation
(Feature engineering)

✓ Develop descriptive features

✓ Calculate features on daily base

One week measurement data





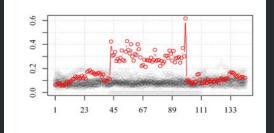
Step 3: Identification Calculate and apply threshold: $l_{MAD} = \begin{cases} median(x) + 3 \cdot MAD \\ median(x) - 3 \cdot MAD \end{cases}$

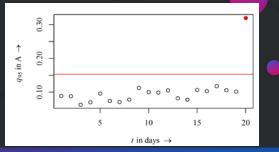
Anomaly score is calculated:

$$S_{\rm A} = \left(\frac{x_i - l_{\rm MAD}}{l_{\rm MAD}}\right)$$

 \checkmark Anomaly detection for $S_A > 0$

Measurement data (Normal & Abnormal days)

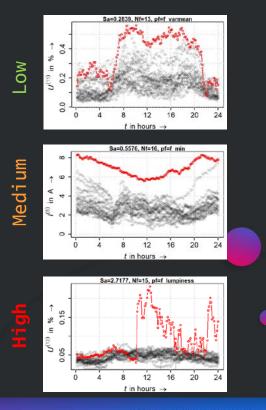




- Step 4: Quantification and aggregation
 ✓ Definition of significance levels to prioritize anomalies
 - o **Low**
 - o Medium
 - o High

Adjustable to expert interest
 Used for anomaly ranking
 Summaries to identify problematic measurements or parameters

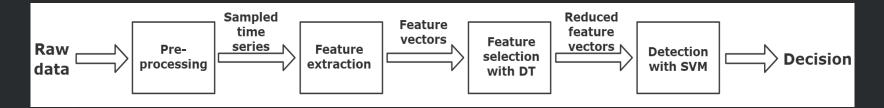
 Anomaly classification based on features

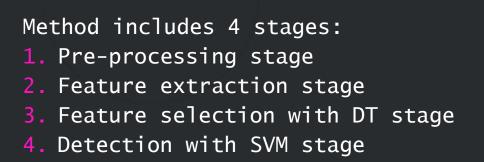


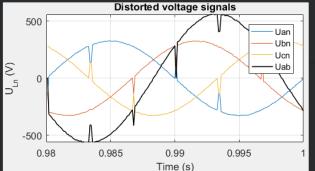
PQ disturbance detection using AI methods Content

- 1. Notch detection process
- 2. Pre-processing
- 3. Feature extraction
- 4. Feature selection with DT
- 5. Detection with SVM

PQ disturbance detection using AI methods Notch detection process







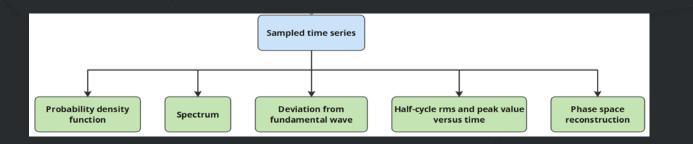
PQ disturbance detection using AI methods Pre-processing & Feature extraction

Stage 1: Preprocessing stage

- Exploratory data analysis
- Data normalization

Stage 2: Feature extraction

- 5 possible branches of characterization
- Quantify PQ data time-series properties
- 14 features have been developed



PQ disturbance detection using AI methods Feature selection

Stage 3: Feature selection

Decision tree (DT) used for feature selection

Splitting criteria of DT:
 (used to estimate the performance of each features)

• Gini index

Pruning parameters:(used to limit the size of the DT)

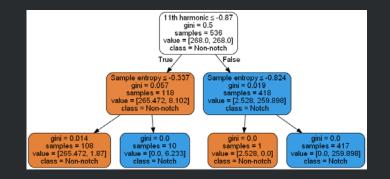
- The maximal depth
- The maximal number of features
- The minimal decrease of impurity to split a node
- The minimal number of samples in a leaf node
- The minimal number of samples to split a node

Module 1

PQ disturbance detection using AI methods Feature selection

Stage 3: Feature selection

- 5 features (out of 14) are selected for classification:
- 11th harmonic
- Sample entropy
- Variance of half-cycle peak value
- Variance of half-cycle RMS value
- Oscillation rate



Module 1

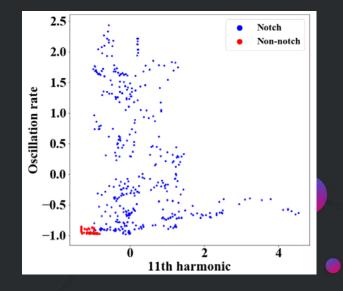
PQ disturbance detection using AI methods Detection with SVM

Stage 4:Detection with SVM

Support vector machine (SVM):
 (A binary classification algorithm aiming at the maximal-margin decision surface (classifier) for the binary labeled samples)

- Classifier testing has been conducted
- Synthetic data
- Measurement data
- Notch and non-notch data

> Final accuracy more than 95%



Literature

- J. Pohl, "The Five Tribes of Machine-Learning: A Brief Overview", pp. 113-132, 2019.
- M. Negnevitsky, *Artificial Intelligence*, 2nd edition, Addison Wesley, 2005.
- D. Kriesel, A Brief Introduction to Neural Networks. 2005.
- R. J. Hyndman und G. Athanasopoulos, "Forecasting: Principles and Practice", 2nd edition, 2018.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 837626

